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Wilson Action

Last time we ended up with the Wilson plaquette action

S=
β

2N ∑
x,µ,ν

Pµν(x).

It is not too hard (and therefore an exercise) to show that

S→ 1

4g2
0

Z
d4x(Fa

µν)
2,

1

g2
0

=
β

2N

as a→ 0, β fixed.

Then the functional integral is

〈•〉=
1
Z

Z
DU •e−S, DU = ∏

x,µ
dUµ(x)

with Z such that 〈1〉= 1.

Lattice Field Theory 3 Plaquette Action Andreas S. Kronfeld

1



A Criterion for Confinement

Consider the so-called Wilson loop:

W(R,T) = tr

[
R−1

∏
r=0

Ui(x+ rae(i))
T−1

∏
t=0

U4(x+Rae(i) + tae(4))×

R

∏
r=1

U†
i (x+(R− r)ae(i) +Tae(4))

T

∏
t=1

U†
4(x+(T− t)ae(4))

]
It corresponds to the energy of two static sources of color, separated by distance R,
evolving forward through time T.

In a confining theory, one expects the energy to grow with R;
otherwise V(R)∼ const−α/R.

〈W(R,T)〉 ∼ e−TV(R) =
{

e−TRσ area law, string tensionσ
e−Tconst perimeter law

.
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Strong Coupling Expansion

In the pure gauge theory, it is very easy to expand in powers of β ∝ g−2
0 .

e−S= ∏
x,µ,ν

(1− β
2N

Pµν + . . .)

Because
R

dU U = 0, 〈W(R,T)〉 vanishes at order β0, β1, . . . .
The integration over the links in the Wilson loop yields zero.

The only way to get non-zero is to pick up a plaquette term for each link in the loop.

But then there are other links for which
R

dU U = 0.

The first non-zero term in the expansion picks up a factor of β for every plaquette on
the planar surface enclosed by W(R,T).

〈W(R,T)〉 ∼ (const×β)RT ⇒ confinement withσ ∝ − lnβ
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The Transfer Operator

Before introducing fermions for lattice QCD, we have to tie up a loose end.

In the last lecture, I started to switch back and forth between the path integral and
canonical quantum mechanics without taking the (temporal) lattice spacing to zero.

The reason for that is that most lattice actions of interest have a time evolution oper-
ator that maps wavefunctions at time t to t +a.

It should be called the transfer operator, but more commonly, by an abuse of lan-
guage, it is called the transfer matrix T̂.

If T̂ is real and positive, we can define a “Hamiltonian”

Ĥ =−1
a

ln
(
T̂/T0

)
The energies obtained from the exponential fall-off are eigenvalues of Ĥ.
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In quantum mechanics (or in bosonic field theory) it is an integral operator:

(T̂Ψ)(xt+1) =
Z

dxt e−
1
2[m(xt+1)2/a+aV(xt+1)]emxt+1xt/ae−

1
2[m(xt)2/a+aV(xt)]Ψ(xt)

For fermions the construction is more complicated, but similar in spirit.

If the discretization of the time derivative extends over more than one time slice, it
may be possible to define a multi-slice transfer operator.

Ĥ =− 1
na

ln
(
T̂n/Tn0

)
If T is real and positive, so is H. Then, with several reasonable assumptions, it is
possible to work backwards, from the functional integral, through the transfer operator,
to a Hilbert space of states, i.e., to canonical quantum theory. (Called Osterwalder-
Schrader reconstruction.)

Not necessarily practical (in the context of numerical calculations) if you need many
states to build up some Minkowski object.
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Lattice Fermions

In the continuum, fermions (such as the quarks in QCD) have the Lagrangian

L(x) =−ψ̄(x)(/D+m0)ψ, /D = Dµγµ, {γµ,γν}= 2δµν

We would like to find a discretization of this Lagrangian. We’ve learned how to put in

the gauge fields, so let’s focus on the free case.

The simple choices ∂µ→ tµ−1 or 1− t−µ are not anti-Hermitian, so the particle and

anti-particle parts of ψ would propagate differently.

The simplest anti-Hermitian choice is (tµ− t−µ)/2a, yielding the naive action

LNF =−ψ̄(x)

[
1
2a∑

µ
γµ(tµ− t−µ)+m0

]
ψ(x)
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Naive Propagator

The propagator that one gets from this Lagrangian is (t > 0)

G(t,~p) =
Z

dp4
2π

eip4t a
i ∑µγµsin(pµa)+m0a

=
1

sinh(2Ea)

[
e−Et

(
γ4sinh(Ea)− i ∑

i
γi sin(pia)+m0a

)

+
(
−e−Ea

)t/a
(
−γ4sinh(Ea)+ i ∑

i
γi sin(pia)+m0a

)]
where sinh2(Ea) = ∑i sin2(pia)+(m0a)2.

The first term is desirable; the second term has a peculiar oscillation (−1)t/a.
Moreover, there are low-lying states for pia ∼ 0,(π,0,0),(π,π,0),(π,π,π) · · ·.
2×8 = 16 species in all. The Fermion Doubling Problem.
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In perturbation theory, 16 species arise from the 16 regions where sin(pµa)∼ a.

Vacuum polarization:

a
dg2

0
da

= 2
g4

0
16π2

(
11N

3
−

2nf

3

)
+O(g6

0)

With naive fermions one find a result of this form but with nf = 16nψ.

Anomaly in flavor singlet axial current Aµ = 1
2ψ̄(Tµ+T−µ)γµγ5ψ from gauging

ψ 7→ eiαγ5ψ, ψ̄ 7→ ψ̄eiαγ5.

In continuum obtain ∂ ·A ∝ A , where A is the axial anomaly. Now

ANF = (1−4+6−4+1)A = 0

On lattice, symmetries are either exact or explicitly broken.
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The Fermion Doubling Problem

The spectrum of naive fermions is the first sign that fermions do not like the lattice.

The Nielsen-Ninomiya Theorem says that there is no ultra-local fermion action with

the full chiral symmetry, no additional states, and a real, positive transfer matrix.

For a long time “ultra-local” was phrased “local”. Ultra-local means that interactions

coupling fields vanish if the fields are farther apart than some fixed distance, of order

a few lattice spacings.

“Local” means that they merely fall off exponentially.

There are now fermion discretizations with undoubled spectra and full chiral symme-

try. Not ultra-local so no transfer matrix.
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Wilson Fermions

To cope with the doubled spectrum, Wilson reasoned as follows.

The particle states should use projection matrices so that some components move
forward in time, and others backward.

∂4ψ(x)→
(

1− γ4
2

t4−1
a

+
1+ γ4

2
1− t−4

a

)
ψ(x)

ψ̄(x)γ4∂4ψ(x)→ ψ̄(x)
(

γ4−1
2

t4−1
a

+
1+ γ4

2
1− t−4

a

)
ψ(x)

= ψ̄(x)
(

γ4
t4− t−4

2a
− 1

2a
t4+ t−4−2

a2

)
ψ(x)

Repeat in all directions, leading to

LWF = LNF− 1
2a∑

µ
ψ̄(x)

(
tµ+ t−µ−2

a2

)
ψ(x)
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Propagator for free Wilson fermions (for t > 0)

G(t,~p) =
ae−Et

2sinh(Ea)
γ4sinh(Ea)− i ∑i γi sin(pia)+m0a+ 1

2a2~̂p
2
+1−cosh(Ea)

1+m0a+ 1
2a2~̂p

2

with

cosh(Ea) = 1+
1
2

∑i sin2(pia)+(m0a+ 1
2a2~̂p

2
)2

1+m0a+ 1
2a2~̂p

2

Now no oscillating state arises, and the energy is low only when ~p is small.

The price paid is sacrificing chiral symmetry ψ 7→ eiαγ5ψ, ψ̄ 7→ ψ̄eiαγ5. Both the mass

term and the new Wilson term break chiral symmetry explicitly.

mR = Zm(g2
0)
[
m0+a−1g2

0C(g2
0)
]
.

On the other hand, the axial anomaly does come out correctly: the Wilson term leads

to contributions of the form a
R

d4k/k3∼ aa−1∼ a0.
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Staggered Fermions

In the early days, Susskind studied a Hamiltonian lattice gauge theory (discrete
space, continuous time, Hamiltonian with conjugate momenta). He found a way to
formulate the fermions with less doubling.

On a spacetime lattice start with the naive fermion Lagrangian, re-written here

LNF =−ψ̄(n)

[
1
2a∑

µ
γµ(Tµ−T−µ)+m0

]
ψ(n)

with n∈ Z4 dimensionless site labels.

Introduce a unitary similarity transformation

ψ(n) = Ω(n)Ψ(n), ψ̄(n) = Ψ̄(n)Ω†(n), Ω(n) = γn1
1 γn2

2 γn3
3 γn4

4

Ω†(n)γµT±µΩ(n) = ηµ(n)T±µ, ηµ(n) = (−1)n1+···nµ−1
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After the transformation, the Lagrangian is

LNF =−
4

∑
α=1

Ψ̄α(n)

[
1
2a∑

µ
ηµ(n)(Tµ−T−µ)+m0

]
Ψα(n)

Chiral symmetry remains intact. After the similarity transformation

Ω†(n)γ5Ω(n) = γ5η5(n), η5(n) = (−1)n1+n2+n3+n4 =: ε(n)

Ψ(n) 7→ eiαγ5η5(n)Ψ(n), Ψ̄(n) 7→ Ψ̄(n)eiαγ5η5(n).

The chiral transformation rotates even sites (n1+n2+n3+n4 mod 2= 0) one way
and odd sites (n1+n2+n3+n4 mod 2= 1) the other, so it is still global.

Written this way, the lattice fermion field has 4 pieces, each with the same Lagrangian;
two each with γ5Ψ =±Ψ. Truncate ∑4

α=1 to one component.
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The Lagrangian for the one component field χ is

Lstag=−χ̄(n)

[
1
2a∑

µ
ηµ(n)(Tµ−T−µ)+m0

]
χ(n)

with U(1)×U(1) chiral symmetry

χ(n) 7→ eiθ+iαη5(n)χ(n), χ̄(n) 7→ χ̄(n)e−iθ+iαη5(n).

This symmetry is enough to forbid an additive counter-term to the bare mass.

Vacuum polarization now behaves as if there are four species. Originally, these were
called flavors, in the hope that the four species could be given different masses and
correspond to u, d, s, c. Now they are looked at as unphysical and called “tastes”.

The Noether currents corresponding to the U(1)×U(1) chiral symmetry are conserved;
the symmetry is exact. We will find another current with the correct anomaly.

Staggered fermions still have the oscillating states; acceptable Hamiltonian H from a
two-slice transfer matrix.
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Ginsparg-Wilson Relation

In continuum gauge theories, chiral symmetry (for physical amplitudes) follows es-

sentially from {/D,γ5}= 0.

It is worth asking whether this condition is (on a lattice) necessary, or merely sufficient.

It is only sufficient; Ginsparg and Wilson derived the necessary condition:

D−1
lat γ5+ γ5D−1

lat = aγ5 ⇒ γ5Dlat+Dlatγ5 = aDlatγ5Dlat

In the form on the left, we see that in correlation functions the violation of chiral sym-

metry is a local “contact” term, which drops out of the long-distance physics.

Until a few years ago, no solutions (except in free field theory) were known. Now

some local, but not ultra-local, solutions have been found.
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Numerical Methods for Fermions

The incorporation of fermions into numerical simulations is the most daunting com-
putational problem in lattice QCD.

The Pauli exclusion principle states that two fermions cannot be in the same state.

Therefore, the integration variables in the functional integral are Grassman numbers:

{ψa,ψb}= {ψ̄a,ψb}= {ψ̄a, ψ̄b}= 0

The integration rule is (α complex, ε & ε̄ Grassman)Z
dψ(α+ ε̄ψ) =−ε̄,

Z
dψ̄(α+ ψ̄ε) = ε

Invariance under multiplication says

ψ = ξψ′ ⇒ dψ = dπ′/ξ
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Every action that we introduced to the form

S= ∑
a,b

ψ̄aMabψa, M = M(U)

Using the rules of Grassman integrationZ
DψDψ̄e−ψ̄Mψ =

Z
Dψ′Dψ̄′e−ψ̄′V−1MVψ′ = ∏

a
[V−1MV]aa = detM

The physical interpretation of detM(U) is all possible fermions loops in the back-
ground of gauge field U .

A numerical simulation the generates gauge fields with weight detM e−Sgauge.

This is normal arithmetic, but the computational problem is huge.

M is a (3·4N4)× (3·4N4) matrix.
(Sparse for naive, staggered, and Wilson, but not GW; omit 4 for staggered.)
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Summary of Fermion Methods

Pattern of chiral symmetry breaking for various formulations of lattice fermions.

formulation G→ H CPU
staggered Γ4×U(1)→ Γ4 fast: mq > 0.2ms, but nf = 4

Wilson SU(nf )→ SU(nf ) slower: mq > 0.5ms
G-W SU(nf )×SU(nf )→ SU(nf ) very slow: M not sparse

continuum QCD SU(nf )×SU(nf )→ SU(nf )

For all methods, the computation of detM (or changes in detM) gets slower and

slower as the quark mass decreases (ratio of eigenvalues).
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